Week 11: The vented cabinet loudspeaker (part 2)

Microphone and Loudspeaker Design - Level 5

Joshua Meggitt

Acoustics Research Centre, University of Salford

What are we covering today?

1. Vented cabinet equivalent circuit

2. Choosing an alignment

3. Passive radiator loudspeaker

Vented cabinet equivalent circuit

Vented cabinet loudspeaker: box volume velocity

Driver/diaphragm:

 M_{AS} , C_{AS} , R_{AS} - mechanical mass, compliance and damping (inc. air loading) U_D - volume velocity

• Cabinet:

 $C_{AB},\ R_{AB}$ - compliance and damping U_{B} - volume velocity

• Vent:

 M_{AV} , R_{AV} - mass and damping (inc. air loading)

 U_{V} - volume velocity

Figure 1: Vented cabinet loudspeaker.

Vented cabinet loudspeaker: equivalent circuit

- The supplied current U_D is separated into U_V and $U_B = U_D U_V$
- To make life easier we can group all acoustic loading terms within the driver and vent mass/damping
- To design a vented loudspeaker we will need to analyse this circuit...

Figure 2: Simplified complete equivalent circuit for vented cabinet.

Vented cabinet loudspeaker: equivalent circuit analysis

- We have an equivalent circuit for the low frequency response of a vented cabinet.
- We can analyse it and figure out what sort of frequency response we will get for some specified parameters.
- **Big question:** how do we design a vented loudspeaker to achieve a *particular* frequency response shape?
 - Turns out its quite easy!
 - But first we need to play with some equations...

$$Z_D = \frac{BL^2}{S_D^2 R_E} + R_{AD} + j\omega M_{AS} + \frac{1}{j\omega C_{AS}}$$
 (1)

- Group into complex impedances
- Use AC circuit analysis

$$Z_B = R_{AB} + \frac{1}{j\omega C_{AB}}$$
 $Z_V = R_{AV} + j\omega M_{AV}$ (2)

Figure 2: Simplified complete equivalent circuit for vented cabinet.

• Total impedance of circuit:

$$Z_T = Z_D + \frac{Z_B Z_V}{Z_B + Z_V} \qquad (3)$$

• Get current through each branch:

$$U_D = \frac{\frac{VBL}{S_D R_E}}{Z_T} \tag{4}$$

$$U_B = \frac{Z_V}{Z_B + Z_V} U_D \tag{5}$$

$$U_V = \frac{Z_B}{Z_B + Z_V} U_D \qquad (6)$$

 In far field driver/vent path length difference is negligible. Total volume velocity:

$$U_T = U_D + (-)U_V = \frac{U_B}{} \tag{7}$$

Figure 3: Grouped equivalent circuit.

 The total volume velocity is the current (or volume velocity) through the box branch.

$$U_B = U_T = \frac{Z_V}{Z_B + Z_V} U_D \qquad (8)$$

$$U_T = \frac{Z_V}{Z_B + Z_V} \frac{\frac{VBL}{S_D R_E}}{Z_D + \frac{Z_B Z_V}{Z_B + Z_V}} \quad (9)$$

 We want to simplify this volume velocity expression and substitute into (monopole) radiation model... • After some algebra...

$$U_T = \frac{\left(\frac{VBL}{S_D R_E}\right)}{Z_D\left(\frac{Z_B}{Z_V} + 1\right) + Z_B} \tag{10}$$

Figure 3: Grouped equivalent circuit.

Total volume velocity

$$U_T = \frac{\frac{VBL}{S_D R_E}}{Z_D \left(\frac{Z_B}{Z_V} + 1\right) + Z_B} \tag{11}$$

• Substitute branch impedance terms (for now consider *lossless* cabinet)

$$Z_D = \underbrace{\frac{BL^2}{S_D^2 R_E} + R_{AD} + j\omega M_{AS} + \frac{1}{j\omega C_{AS}}}$$
(12)

$$Z_B = BAB + \frac{1}{j\omega C_{AB}} \qquad Z_V = BAV + j\omega M_{AV}$$
 (13)

$$U_T = \frac{\frac{VBL}{S_D R_E}}{\left(R_{AS} + j\omega M_{AS} + \frac{1}{j\omega C_{AS}}\right) \left(\frac{1}{(j\omega)^2 M_{AV} C_{AB}} + 1\right) + \frac{1}{j\omega C_{AB}}}$$
(14)

• Factor out $j\omega M_{AS}$ (just like we did for sealed cabinet)

$$U_{T} = \frac{VBL}{j\omega M_{AS}S_{D}R_{E}} \frac{1}{\left(1 + \frac{R_{AS}}{j\omega M_{AS}} + \frac{1}{(j\omega)^{2}M_{AS}C_{AS}}\right)\left(\frac{1}{(j\omega)^{2}M_{AV}C_{AB}} + 1\right) + \frac{1}{(j\omega)^{2}M_{AS}C_{AB}}}$$
(15)

• Re-parametrize in terms of free driver and cabinet properties

$$\frac{Q_{TS}}{\omega_s} = \frac{M_{AS}}{R_{AS}} \qquad \omega_s^2 = \frac{1}{M_{AS}C_{AS}} \qquad \omega_b^2 = \frac{1}{M_{AV}C_{AB}} \qquad \alpha = \frac{C_{AS}}{C_{AB}} \quad (16)$$

• Re-parametrize in terms of free driver and cabinet properties

$$U_{T} = \frac{VBL}{j\omega M_{AS}S_{D}R_{E}} \frac{1}{\left(1 + \frac{\omega_{s}}{j\omega} \frac{1}{Q_{TS}} + \left(\frac{\omega_{s}}{j\omega}\right)^{2}\right) \left(\left(\frac{\omega_{b}}{j\omega}\right)^{2} + 1\right) + \alpha \left(\frac{\omega_{s}}{j\omega}\right)^{2}}$$
(17)

Total volume velocity product of two terms

$$U_{T} = \underbrace{\frac{VBL}{j\omega M_{AS}S_{D}R_{E}}}_{\text{Fourth order HP: } F(j\omega)} \underbrace{\frac{1}{\left(1 + \frac{\omega_{s}}{j\omega} \frac{1}{Q_{TS}} + \left(\frac{\omega_{s}}{j\omega}\right)^{2}\right) \left(\left(\frac{\omega_{b}}{j\omega}\right)^{2} + 1\right) + \alpha\left(\frac{\omega_{s}}{j\omega}\right)^{2}}_{\text{C18}}$$

- ullet This looks very similar to sealed cabinet, except $E(j\omega) \to F(j\omega)$
- Substitute into monopole radiation equation

$$p(r) = \frac{j\omega\rho_0}{4\pi r} U_T = \frac{j\omega\rho_0 VBL}{j\omega 4\pi r M_{AS} S_D R_E} F(j\omega)$$
 (19)

 \bullet All frequency dependence is contained within the $F(j\omega)$ term - remaining terms control sensitivity

Choosing an alignment

• Frequency response of vented cabinet is governed by the equation:

$$F(j\omega) = \frac{1}{\left(1 + \frac{\omega_s}{j\omega} \frac{1}{Q_{TS}} + \left(\frac{\omega_s}{j\omega}\right)^2\right) \left(\left(\frac{\omega_b}{j\omega}\right)^2 + 1\right) + \alpha \left(\frac{\omega_s}{j\omega}\right)^2}$$
(20)

- Now, given a specific driver (ω_s, Q_{TS}) , how do we design a vented cabinet?
 - 1. Play with α and ω_b parameters until target response is obtained...
 - 2. Do lots of maths and, using filter design theory, derive exact values...
 - 3. Thiele and Small to the rescue..!
- ullet Note, the design of a vented cabinet is more complex than a sealed cabinet where we just chose the required Q_{TC} and solved for the cabinet volume...

Thiele and Small: Australian loudspeaker wizards

- For a long time it was known that ports can improve low frequency performance design was generally trial and error
- Thiele recognised that the driver loudspeaker acts like a high pass filter possible to apply filter design methods directly to the design of loudspeakers
- Small (a student of Thiele) published a series of papers which provided a 'fool proof' way of designing vented cabinet loudspeakers - still used today!

 Important aspect of their work was to realise the driver itself was an important design parameter in the design process.

Figure 4: Neville Thiele and Richard Small.

• Thiele noticed that the vented loudspeaker frequency response

$$F(j\omega) = \frac{1}{\left(1 + \frac{\omega_s}{j\omega} \frac{1}{Q_{TS}} + \left(\frac{\omega_s}{j\omega}\right)^2\right) \left(\left(\frac{\omega_b}{j\omega}\right)^2 + 1\right) + \alpha \left(\frac{\omega_s}{j\omega}\right)^2}$$
(21)

has the same form as a general fourth order electrical network/filter

$$G_{HP}(j\omega) = \frac{1}{1 + a_1 \left(\frac{1}{j\omega}\right) \frac{1}{T_0} + a_2 \left(\frac{1}{j\omega}\right)^2 \frac{1}{T_0^2} + a_3 \left(\frac{1}{j\omega}\right)^3 \frac{1}{T_0^3} + \left(\frac{1}{j\omega}\right)^4 \frac{1}{T_0^4}}$$
(22)

• Constants a_1 , a_2 , and a_3 define the shape of the response curve and $T_0 = (\omega_s \omega_b)^{1/2}$ is filter time constant. Can get these from electrical network theory!

Thiele and Small: seminal papers

- If you are interested in the design of loudspeakers you should read these seminal papers by Thiele and Small.
- A. N. Thiele, Loudspeakers in Vented Boxes, JAES, Vol. 19, Num. 5/6, 1971
 - Part 1 (synthesis approach and system alignments)
 - Part 2 (conclusions pertinent to efficiency, driver Q, and box volume)
- R. H. Small, Vented-box Loudspeaker Systems, JAES, Vol. 21, Num. 5-8, 1973
 - Part 1: Small-signal analysis
 - Part 2: Large signal analysis
 - Part 3: Synthesis
 - Part 4: Appendices
- We will be using the design charts presented in Part 1 of Small's paper.

- α is the compliance ratio $\alpha = C_{AS}/C_{AB}$
- ullet Q_{TS} is the total compliance of the driver
- h is the ratio of free driver and Helmholtz resonance $h=f_b/f_s$
- f_3/f_s is the ratio of free driver resonance and -3 dB cut-off freq.
- B and k are parameters that describe the shape of frequency response
- Chart is obtained by specifying cabinet damping in terms of Q factor.

Figure 5: Design chart for lossless cabinet.

- 1. Select driver $\rightarrow Q_{TS}, f_s, C_{AS}$
- 2. Look up Q_{TS} on left axis, find α , calculate volume $V_{AB} = C_{AB}\rho_0c^2$
- 3. For the same value of α , find h, calculate Helmholtz frequency
- 4. Use f_b determine the vent mass M_{AV} (then pick port dimensions)
- 5. Find -3 dB cut-off frequency using $f_{\rm 3}/f_{\rm s}$

Figure 5: Design chart for lossless cabinet.

Small charts: different cabinet damping

 $Q_1 = 3$

Fig. 13. Alignment chart for vented-box systems with $Q_B = Q_L = 3$. Fig. 6. Alignment chart for lossless vented-box systems.

Fig. 12. Alignment chart for vented-box systems with $Q_h = Q_L = 5$.

.3 .5 .7 1

Fig. 11. Alignment chart for vented-box systems with $Q_{n} = Q_{n} = 7$.

Fig. 10. Alignment chart for vented-box systems with $Q_B = Q_L = 10.$

Fig. 9. Alignment chart for vented-box systems with $Q_{R} = Q_{L} = 20.$

Small charts: effect of misalignment

Fig. 7. Variations in frequency response of lossless B4-aligned vented-box system for misalignment of Q_T (from simulator).

· Fig. 8. Variations in frequency response of lossless B4-aligned vented-box system for misalignment of h (from simulator).

Figure 6: Effect of misalignment on system performance (Small, Part 1).

Sealed vs. Vented

Sealed:

- Easier to design / more forgiving to inaccurate parameters
- Better transient response
- Lower efficiency than ported
- Less extended bass response
- High velocity at driver resonance

Vented:

- Harder to design / easily go wrong!
- Extended bass response
- More efficient that sealed (uses rear radiation)
- Can have a poor transient response
- If the velocity of air in the port is too high ightarrow turbulence ightarrow chuffing
- Below box resonance, the velocity can be high – speaker damage

Vented cabinet design: an example

Design lossless vented cabinet for the SEAS Exotic F8 X1-08 driver

Nominal Impedance	8 Ohms	Voice Coil Resistance	5.7 Ohms
Recommended Frequency Range	30 - 20000 Hz	Voice Coil Inductance	0.07 mH
Short Term Power Handling *	100 W	Force Factor	5.25 N/A
Long Term Power Handling *	35 W	Free Air Resonance	32 Hz
Characteristic Sensitivity (2,83V, 1m)	93.0 dB	Moving Mass	10.0 g
Voice Coil Diameter	26 mm	Air Load Mass In IEC Baffle	1.92 g
Voice Coil Height	7.8 mm	Suspension Compliance	2.5 mm/N
Air Gap Height	12 mm	Suspension Mechanical Resistance	0.57 Ns/m
Linear Coil Travel (p-p)	4.2 mm	Effective Piston Area	222 cm ²
Maximum Coil Travel (p-p)	14 mm	VAS	143 Litres
Magnetic Gap Flux Density	0.8 T	QMS	4.20
Magnet Weight	0.8 kg	QES	0.50
Total Weight	2.6 kg	QTS	0.44

Figure 7: Driver parameters.

- 1. Driver $Q_{TS} = 0.44 \to \alpha = 1.2$
- 2. Get acoustic compliance $C_{AS} = C_{MS}S_D^2$

$$C_{AS} = 2.5 \times 10^{-3} \times (222 \times 10^{-4})^2 = 1.23 \times 10^{-6}$$
 (23)

3. Get box compliance $C_{AB} = C_{AS}/\alpha$

$$C_{AB} = 2.5 \times 10^{-3} / 1.2 = 1.027 \times 10^{-6}$$
 (24)

Figure 8: Design chart for lossless cabinet.

4. Calculate cabinet volume $V_{AB} = C_{AB}\rho_0c^2$

$$V_{AB} = 1.027 \times 10^{-6} \times \rho_0 c^2 = 0.146$$
 (25)

- In litres $V=V_{AB}\times 1000=146$ L
- 5. Use $\alpha=1.2$ to get h=0.95 find $f_b=hf_s$

$$f_b = 0.95 \times 32 = 30.4 \tag{26}$$

6. Use f_b and C_{AB} to get vent mass M_{AV}

$$M_{AV} = \frac{1}{\omega_b^2 C_{AB}} = 32.16 \tag{27}$$

Figure 9: Design chart for lossless cabinet.

- 7. Find vent dimensions that give M_{AV} vent geometry typically defined by 2 or 3 values too many unknowns
- Want to keep vent velocity low enough to avoid 'chuffing'
- Rule of thumb: $S_V \geq 0.8 f_b V_D$ where $V_D = S_D x_{max}$ and x_{max} is the maximum displacement (excursion) of the driver
- 8. Find vent length from vent mass

$$M_{AV} = \frac{\rho_0 L}{S_V} \to L = \frac{M_{AV} S_V}{\rho_0} \tag{28}$$

Figure 9: Design chart for lossless cabinet.

Vented cabinet: port length end corrections

- Important: the volume of air that oscillates extends beyond the vent! Extra mass due to radiation loading.
- Find apparent length L^\prime and apply end correction
- For circular ports we have simple end correction

$$L = L' - (0.85 + 0.61)\sqrt{S_V/\pi}$$
 (29)

- Specify vent area using $S_V=0.8f_bV_D$

$$S_V = f_b V_D = 30.4 \times (222 \times 10^{-4}) \frac{0.014}{2} = 0.00473$$
(30)

Figure 10: End corrections.

Vented cabinet: port length end corrections

- Solve for the vent length

$$L = L' - (0.85 + 0.61)\sqrt{\frac{0.00473}{\pi}} = 0.0691$$
 (31)

8. Determine appropriate dimensions using ${\rm GR}{=}~1.618$

$$\dim_1 = \frac{\sqrt[3]{V_B}}{\mathsf{GR}}, \quad \dim_2 = \sqrt[3]{V_B}, \quad \dim_3 = \sqrt[3]{V_B} \times \mathsf{GR}$$
(32)

- Final dimensions

Box
$$0.33 \times 0.53 \times 0.85$$
 m (width, depth, height)
Vent: 0.07×0.039 m (length, radius)

- Right cabinet type? EBP = $f_s/Q_{TS}=73$

Figure 10: End corrections.

Passive radiator loudspeaker

Passive radiator: another 2 DoF loudspeaker system

- Secondary diaphragm has a mass, suspension compliance and resistance.
- Still have a 2 DoF system... What's changed?
 - We now have an extra compliance due to the secondary diaphragm suspension!

Figure 11: Passive radiator loudspeaker.

Passive radiator: equivalent circuit

Figure 2: Simplified complete equivalent circuit for passive radiator loudspeaker.

$$F(j\omega) = \frac{1}{\left(1 + \frac{R_{AS}}{j\omega M_{AS}} + \frac{1}{(j\omega)^2 M_{AS} C_{AS}}\right) \left(\frac{1}{(j\omega)^2 M_{AD_2} C_{AB} + \frac{C_{AB}}{C_{AD_2}}} + 1\right) + \frac{1}{(j\omega)^2 M_{AS} C_{AB}}}$$
(22)

27

Next week...

- Performance parameters.
- Electro-mag stuff...

- Reading:
 - Performance parameters: Lecture notes, Sec. 8.4
 - Magnetic motor design: Lecture notes, Chp. 9